
3D U-Net Segmentation Page 1

3D U-Net Segmentation

Abstract

As a part of a deep convolutional neural network, the 3D U-Net segmentation introduces a network and training

strategy that is based on the usage of data augmentation to the available samples more efficient. The

architecture consists of a contracting path to capture context and a symmetric expanding path that enables

precise localization.

What is 3D U-Net Segmentation?

3D U-Net segmentation is an architecture based on the Convolutional Neural Network (CNN), which has

typical use to classify labels. However, in medical imaging, the desired output should be more than just

classification. It should contain the localization that is set up to predict the class label of each pixel by providing

a local region around that pixel as an input.

3D U-Net Segmentation Page 2

Dataset

In this experiment, we use the dataset BraTS 2017, the dataset for brain tumors. The differentiation between

low-grade gliomas (LGGs; grade II) and high-grade gliomas (HGGs; grades III, IV) is critical, since the

prognosis and thus the therapeutic strategy could differ substantially depending on the grade.

Glioblastoma (GBM) is a highly aggressive (grade 4) type of brain tumor, with cells that reproduce quickly—

nourished by a large network of blood vessels. GBM is the most common type of HGG, with an annual

incidence of approximately 13,000 in 2019 in the United States. It accounts for about half of all primary brain

and central nervous system cancers.

The architecture

Originally designed after this paper on volumetric segmentation with a 3D U-Net. U-Net uses a weighted cross-

entropy as its loss function. The per-pixel weights are given by a formula which:

• Balances the weights between classes and

• Has an extra term to penalize joining two bits of the segmentation.

With some default values are set in the 3D U-Net model initiation: pool size, the number of labels, the initial

learning rate, no deconvolution, the depth is four, the number of base filters is thirty-two, label wise dice

coefficients provided, activation is sigmoid, etc.

3D U-Net Segmentation Page 3

Preprocessing the Data

We first download the source code from here and unzip the dataset to the folder brats/data/original. There are

some dependencies need to install such as nibabel, keras, pytables, nilearn, SimpleITK, nipype. Unfortunately,

the python 3.x does not support the nipype well because the build currently has some test cases failed as

pictures shown below.

We download the ANTs (should provide the link to the other document) from here (the version should be 2.3.1)

and prepare to configure the environment to preprocess the dataset. We also need to run cmake to build the

dependency from the source code then run configure command to generate default values for the installation.

There are some scripts executed from the python code, so we need to add the repository directory of ANTs

N4BiasFieldCorrection into the PYTHONPATH system variable by navigating to the script folder and run this

command line export PYTHONPATH=${PWD}:$PYTHONPATH

We now convert the data to NIFTI format and perform image-wise normalization and correction. First, we get

in the folder brats and run the python command line from preprocessing import convert_brats_data to import the

package and then convert_brats_data("data/original", "data/preprocessed") to normalize and correct the input.

On a single GPU, it should take up to twenty minutes.

The process basically normalizes the image input and correct the bias and write out a new image output.

https://github.com/ellisdg/3DUnetCNN
https://github.com/ANTsX/ANTs/releases

3D U-Net Segmentation Page 4

Data Generator

We can also define the generator function for the model which has some features that hold in the x list and the

class label (ground truth) in the y list. A list in here is usually a numpy array, and it needs to be converted.

Training the Data

We use original U-Net model here to train the data by running the command python train.py. The training

process should take up to three or four hours. You may need to adjust the path between the folders to make sure

it executes in the right place. You should have four output files such as brats_data.h5,

tumor_segmentation_model.h5 if the training is successful.

3D U-Net Segmentation Page 5

Before training the data, we need to reconfigure the information above to fit the experiment’s purpose. The pool

size must be at least two for each dimension. The labels represent the class labels of the medical imaging such

as a whole tumor, enhanced tumor, etc. The modalities have four types by default, we can take off some for a

specific purpose.

The function fetches all training data files to separate the training modalities in the subject list.

Write the prediction images

From the same dataset, a part of data was held for validation purposes, and now we are going to write the

predicted label maps to file training_ids.pkl and validation_ids.pkl. The predictions will be written in the folder

prediction along with the input data and ground truth labels for comparison. It should take up to twenty minutes.

Evaluate the model

After running the script evalutate.py in the brats folder, you should have both the loss graph and the box plot.

3D U-Net Segmentation Page 6

References

[1] https://github.com/ellisdg/3DUnetCNN

[2] https://github.com/ANTsX/ANTs

[3] https://github.com/nipy/nipype

[4] https://www.med.upenn.edu/sbia/brats2017.html

[5] https://lmb.informatik.uni-freiburg.de/Publications/2016/CABR16/cicek16miccai.pdf

https://github.com/ellisdg/3DUnetCNN
https://github.com/ANTsX/ANTs
https://www.medicalimaging.org/about-mita/medical-imaging-primer/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2398810/pdf/postmedj00076-0015.pdf
https://lmb.informatik.uni-freiburg.de/Publications/2016/CABR16/cicek16miccai.pdf

