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1. The Recipe for Machine Learning

@ Collect dataset

@ Define data representation (e.g., CNN architecture)

@ Minimize the loss (optimizer)

» Loss functions are one of the important ingredients in deep learning-based medical
Image segmentation methods.

» \We present a systematic taxonomy to sort existing loss functions into four meaningful
categories. This helps to reveal links and fundamental similarities between them.



2. Loss Overview

Background

Over the past five years, various loss functions have been proposed for deep learning-based
medical image segmentation.

Goal

In the following slides, | will present the loss functions in a chronological order, but sort
them into four organized groups.

» Distribution-based loss

» Region-based loss

» Boundary-based loss

» Compound loss
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Two commonly used loss functions
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Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation.” International Conference on Medical image
computing and computer-assisted intervention. Springer, Cham, 2015.
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Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2015.
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(2016).
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International Workshop on Machine Learning in Medical Imaging. Springer, Cham, 2017.
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measure in neural networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.
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Sudre, Carole H., et al. "Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations.” Deep learning in medical image analysis and
multimodal learning for clinical decision support. Springer, Cham, 2017. 240-248.
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Symposium on Biomedical Imaging (1ISBI) (2019).
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Kervadec, H., Bouchtiba, J., Desrosiers, C., Granger, E., Dolz, J. & Ben Ayed, I.. (2019). Boundary loss for highly unbalanced segmentation. Proceedings of The 2nd
International Conference on Medical Imaging with Deep Learning, in PMLR 102:285-296
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multiple sclerosis lesion detection." IEEE Access 7 (2018): 1721-1735.
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of The 2nd International Conference on Medical Imaging with Deep Learning, in PMLR 102:285-296
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3. Code & Reference

Talk is cheap, here is the code (pytorch):
https://github.com/JunMall/Segl oss

Z JunMa11 / SeglLoss %  @unwatch~ 17 Wrstar 202 YFork 37
<> Code Issues 0 Pull requests 0 Projects 0 Wiki Security Insights Settings
A collection of loss functions for medical image segmentation Edit

Manage topics

D 45 commits ¥ 1 branch © 0 releases 42 1 contributor
Branch: master = MNew pull request Create new file Upload files = Find file Clone or download ~
*¥ JunMat1 Add Non-Adjacency loss - Latest commit 9bd7@b8 on 2 Sep
8 losses_pytorch Add files via upload 2 months ago
B test Add files via upload 2 months ago

E) README.md Add Non-Adjacency loss 2 months ago


https://github.com/JunMa11/SegLoss

Thanks for Reading!



