
A beginner’s guide to shape
analysis using Deformetrica

Benoit Martin Follow

Aug 23 · 13 min read

Deformetrica is a great toolbox for statistical shape analysis. This

guide will provide step-by-step instructions from a clean setup to a

fully running example.

Only you can see this message

This story's distribution setting is on. Learn more

A beginner’s guide to shape analysis using Def... https://medium.com/miccai-educational-initiative...

1 of 29 10/14/19, 1:42 PM

Transformation Diagrams from On Growth and Form by D’Arcy Thompson (published by

Cambridge University Press in 1917)

. . .

Table of Contents
1. Overview

2. Installing Deformetrica

3. Running a simple example: Deterministic Atlas

4. Using the Python API: Geodesic Regression

5. Using the command line tool: Registration

6. Final thoughts

7. References

A beginner’s guide to shape analysis using Def... https://medium.com/miccai-educational-initiative...

2 of 29 10/14/19, 1:42 PM

Overview
Deformetrica is an open-source software application developed by

the Aramis Lab team (Inria, CNRS, Inserm, Sorbonne Université)

at the Brain and Spine Institute in Paris. This software can be

viewed as a toolbox containing a number of statistical analysis

methods for 2D and 3D shape data. It essentially computes

deformations of the 2D or 3D ambient space, which, in turn, warps

any object embedded in this space, whether this object is a curve, a

surface, a structured or unstructured set of points, an image, or any

combination of them.

Deformetrica comes with three main applications:

registration: estimates the best possible deformation between

two sets of objects

atlas construction: estimates an average object configuration

from a collection of object sets, and the deformations from this

average to each sample in the collection

geodesic regression: estimates an time-series object

constrained to match as closely as possible a set of observations

indexed by time

Deformetrica has very little requirements about the data it can deal

with.

In particular, it does not require point correspondence between

objects!

A beginner’s guide to shape analysis using Def... https://medium.com/miccai-educational-initiative...

3 of 29 10/14/19, 1:42 PM

. . .

At the time this article was written, Deformetrica version 4.3.0

RC is the latest, up-to-date version available. The following article

will be based on this version.

Installing Deformetrica
Requirements: Deformetrica 4.3 RC is available on Linux and

MacOS for Python 3.6 and 3.7. For any other configuration, it is

possible to open an issue on the official repository or write a

message on the official Google group.

Before continuing: make sure that Conda or Miniconda is

installed before following the next steps.

Currently, Deformetrica is available through 2 main sources: the

repository and a conda package. For an easy and simple setup it is

recommended to use the conda setup method.

$ conda create -n deformetrica python=3.7
$ source activate deformetrica
$ conda install -c pytorch -c conda-forge -c anaconda -c
aramislab/label/rc deformetrica

These conda commands will create and activate an isolated conda

environment based on python 3.7. Then, conda will install

A beginner’s guide to shape analysis using Def... https://medium.com/miccai-educational-initiative...

4 of 29 10/14/19, 1:42 PM

deformetrica and its dependencies (this step can take a long time

depending on your connection. Now would be a perfect time to

Once the installation is complete, you can check that Deformetrica

has successfully been installed by running the following command:

$ deformetrica --help
usage: deformetrica [-h]
{estimate,compute,initialize,finalize,gui}

Statistical analysis of 2D and 3D shape data.

version 4.3.0

optional arguments:
 -h, --help show this help message and exit

command:
 {estimate,compute,initialize,finalize,gui}

Deformetrica has successfully been installed within a dedicated

conda environment!

. . .

In the next 2 examples we will first be running an Atlas on a set of

2D polylines representing simple skull structures using

Deformetrica’s command line interface (CLI) and secondly, we will

be running a Geodesic Regression using the Python application

A beginner’s guide to shape analysis using Def... https://medium.com/miccai-educational-initiative...

5 of 29 10/14/19, 1:42 PM

programming interface (API).

Before continuing: the example dataset should be downloaded in

order to run the following code snippets. The first example will be

based on the example given in the atlas/landmark/2d/skulls

folder. The second example will be based on the

registration/landmark/3d/surprise folder. All the following paths

are relative to the example folder corresponding to the example.

Running a simple example: Deterministic
Atlas
Given a family of objects, the atlas model proposes to learn a

template shape which corresponds to a average of the given

objects. A complete description of the mathematics for the

deterministic atlas model is given on the LDDMM page from the

official wiki.

Let’s start by viewing the data on which the atlas will be estimated.

The skulls dataset in composed of 5 2D skull polylines and an

initial template 2D polyline. Here is a matplotlib output of the

data:

A beginner’s guide to shape analysis using Def... https://medium.com/miccai-educational-initiative...

6 of 29 10/14/19, 1:42 PM

Plot showing the skulls dataset used as an Atlas input.

Side note: The source code used to produce the above plots is

available on this Google Colab link.

Before we run the atlas estimation, we can start by checking the

different configuration xml files. If you wish to skip this section,

feel free to do so.

the model.xml file:

<?xml version=”1.0"?>
<model>
 <model-type>DeterministicAtlas</model-type>

<template>
 <object id=”skull”>
 <deformable-object-type>Polyline</deformable-object-type>
 <attachment-type>varifold</attachment-type>
 <kernel-width>20</kernel-width>
 <kernel-type>keops</kernel-type>
 <noise-std>1</noise-std>
 <filename>data/template.vtk</filename>
 </object>
 </template>

 <deformation-parameters>
 <kernel-width>20</kernel-width>

A beginner’s guide to shape analysis using Def... https://medium.com/miccai-educational-initiative...

7 of 29 10/14/19, 1:42 PM

 <kernel-type>keops</kernel-type>
 </deformation-parameters>
</model>

This file contains information on the statistical model that is to be

run. In this example, the model type defines as

a DeterministicAtlas .

The template section defines the list of objects considered in the

computation. In our case, a single polyline object is used.

Finally, the deformation parameters section defines the kernel

parameters that will be used to perform the deformations. Again,

more information on this can be found on the LDDMM page.

Additional information on the model xml file can be found on the

official wiki using the following link.

The data_set.xml file:

<?xml version=”1.0"?>
<data-set>
 <subject id=”australopithecus”>
 <visit id=”experiment”>
 <filename
object_id=”skull”>data/skull_australopithecus.vtk</filename>
 </visit>
 </subject>

[... snip ...]

 <subject id=”sapiens”>
 <visit id=”experiment”>
 <filename
object_id=”skull”>data/skull_sapiens.vtk</filename>
 </visit>

A beginner’s guide to shape analysis using Def... https://medium.com/miccai-educational-initiative...

8 of 29 10/14/19, 1:42 PM

 </subject>
</data-set>

This file contains the paths to all the objects that will be considered

when computing the atlas. Here a relative or an absolute path can

be given. Each observation is a subject section with a subject id.

Each subject section contains a single visit which contains the list

of filenames, with the id of the shape as an attribute.

Additional information on the dataset xml file can be found on the

official wiki using the following link.

the optimization_parameters.xml file:

<?xml version=”1.0"?>
<optimization-parameters>
 <optimization-method-type>GradientAscent</optimization-
method-type>
</optimization-parameters>

Kept to a minimum for this example, this file simply specifies the

optimization-method-type that should be used, in this case a

Gradient Ascent optimizer.

Additional information on the optimization xml file can be found

on the official wiki using the following link.

. . .

A beginner’s guide to shape analysis using Def... https://medium.com/miccai-educational-initiative...

9 of 29 10/14/19, 1:42 PM

Now that the configuration files have been set up, we can carry out

the actual atlas estimation by running the deformetrica estimate

command and by inputting the xml files and optionally setting the

verbose setting to INFO as follows:

$ deformetrica estimate model.xml data_set.xml -p
optimization_parameters.xml -v INFO

This will produce a console output similar to the following:

$ deformetrica estimate model.xml data_set.xml -p
optimization_parameters.xml -v INFO
No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda'
INFO:deformetrica.__main__:No output directory defined,
using default: XXX/examples/atlas/landmark/2d/skulls/output
Logger has been set to: INFO
>> No initial CP spacing given: using diffeo kernel width of
40.0
OMP_NUM_THREADS was not found in environment variables. An
automatic value will be set.
OMP_NUM_THREADS will be set to 2
Could not set torch settings.
>> No specified state-file. By default, Deformetrica state
will by saved in file: XXX/examples/atlas/landmark/2d/skulls
/output/deformetrica-state.p.
>> Removing the pre-existing state file with same path.
>> Set of 16 control points defined.
>> Momenta initialized to zero, for 5 subjects.
>> Started estimator: GradientAscent
Compiling libKeOpstorch1a4ca06227 in XXX/.cache/pykeops-
1.1.1//build-libKeOpstorch1a4ca06227:
 formula: Sum_Reduction(Exp(-G*SqDist(X,Y)) * P,0)
 aliases: G = Pm(0,1); X = Vi(1,2); Y = Vj(2,2); P =
Vj(3,2);
 dtype : float32
... Done.

[... snip ...]

A beginner’s guide to shape analysis using Def... https://medium.com/miccai-educational-initiative...

10 of 29 10/14/19, 1:42 PM

Compiling libKeOpstorcha15fafbaa6 in XXX/.cache/pykeops-
1.1.1//build-libKeOpstorcha15fafbaa6:
 formula: Grad_WithSavedForward(Sum_Reduction((Px|Py)
* Exp(-G*SqDist(X,Y)) * (X-Y),0), Var(4,2,1), Var(5,2,0),
Var(6,2,0))
 aliases: G = Pm(0,1); X = Vi(1,2); Y = Vj(2,2); Px =
Vi(3,2); Py = Vj(4,2); Var(5,2,0); Var(6,2,0);
 dtype : float32
... Done.
----------------------- Iteration: 0 -----------------------
>> Log-likelihood = -1.773E+05 [attachment = -1.773E+05 ;
regularity = 0.000E+00]
>> Step size and gradient norm:
 5.306E-04 and 1.885E+03 [momenta]
----------------------- Iteration: 1 -----------------------
>> Log-likelihood = -1.755E+05 [attachment = -1.755E+05 ;
regularity = -1.706E+00]
>> Step size and gradient norm:
 7.960E-04 and 1.882E+03 [momenta]
----------------------- Iteration: 2 -----------------------
>> Log-likelihood = -1.726E+05 [attachment = -1.726E+05 ;
regularity = -1.067E+01]
>> Step size and gradient norm:
 1.194E-03 and 1.877E+03 [momenta]

[... snip ...]

----------------------- Iteration: 98

>> Log-likelihood = -1.896E+04 [attachment = -5.672E+03 ;
regularity = -1.328E+04]
>> Step size and gradient norm:
 1.893E-03 and 1.514E+03 [landmark_points]
 2.107E-02 and 1.122E+02 [momenta]
----------------------- Iteration: 99

>> Log-likelihood = -1.889E+04 [attachment = -5.578E+03 ;
regularity = -1.331E+04]
>> Step size and gradient norm:
 1.893E-03 and 1.329E+03 [landmark_points]
 1.054E-02 and 1.395E+02 [momenta]
----------------------- Iteration: 100

>> Log-likelihood = -1.883E+04 [attachment = -5.646E+03 ;
regularity = -1.318E+04]
>> Estimation took: 02 minutes and 58 seconds
Deformetrica.__del__()

A beginner’s guide to shape analysis using Def... https://medium.com/miccai-educational-initiative...

11 of 29 10/14/19, 1:42 PM

Note that by default the Keops kernel is used to perform

deformations. This results in the compilation of a few libraries due

to the inner workings of the Keops library. This step might take a

few minutes but, fortunately, is only done once on the first run.

By default, an output folder will be created in the current working

directory and will contain numerous files:

a date and time stamped log file containing the console output

a few .vtk files which represent the final deformations as well

as the intermediate deformation steps

some .txt files which correspond to the estimated control-

points, momentum and residuals

a deformetrica-state.p file that can be used to resume an

estimation

You can now import the intermediate vtk files into your favorite vtk

viewer. Here is what an animation would look like in ParaView for

the australopithecus subject:

A beginner’s guide to shape analysis using Def... https://medium.com/miccai-educational-initiative...

12 of 29 10/14/19, 1:42 PM

Animation showing the estimated template (�rst frame) being deformed onto the target

australopithecus subject (last frame).

Side note: This example can also be found running using the

python API as shown in the Google Colab link.

. . .

Using the Python API: Geodesic Regression
What if Deformetrica is to be used within another Python

application or script? We are in luck! Fortunately, Deformetrica

exposes most of its functionalities in its Python API. It is as simple

as importing the deformetrica python package.

import deformetrica as dfca

A beginner’s guide to shape analysis using Def... https://medium.com/miccai-educational-initiative...

13 of 29 10/14/19, 1:42 PM

. . .

The geodesic regression model will construct a shape trajectory

(geodesic) that will be as close as possible to the given time-spaced

targets. In practice, this will utilize the given time-spaced input

data to compute a geodesic. From this, and depending on the

parameters used for computation, it will be possible to construct

the intermediate data that closely fits to the geodesic.

Note that this example is based on the data found in the

registration/landmark/3d/surprise/data folder that should have

previously been downloaded. This data is composed of a number of

3D polyline vtk files representing a surprised face.

We can first start by viewing a sample of our input data:

Sample input data for time 5, 15, 25 and 35

The following code snippet illustrates how our time-spaced input

data can be used to reconstruct the missing intermediates using a

Geodesic Regression model.

We first start by setting a few dictionaries that correspond to the

A beginner’s guide to shape analysis using Def... https://medium.com/miccai-educational-initiative...

14 of 29 10/14/19, 1:42 PM

input dataset and template that should be used as well as the

estimator options. These settings closely relate to the settings that

can be found in the xml configuration files. In this example, we

also take time to set an estimator callback that is used to retrieve

intermediate metrics corresponding to the method’s convergence

that will later be plotted using matplotlib.

Finally, a Deformetrica object is instantiated (setting the output

directory and the verbosity) and the estimate_geodesic_estimation

method is called.

A beginner’s guide to shape analysis using Def... https://medium.com/miccai-educational-initiative...

15 of 29 10/14/19, 1:42 PM

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

import os

import numpy as np

import matplotlib.pyplot as plt

import deformetrica as dfca

data_path = "./"

data_base = os.path.join(data_path, 'regression/landmark/3d/surprise/data/')

iteration_status_dictionaries = []

def estimator_callback(status_dict):

 iteration_status_dictionaries.append(status_dict)

return True

dataset_specifications = {

'dataset_filenames': [

 [{'skull': os.path.join(data_base, 'sub-F001_ses-000.vtk')},

 {'skull': os.path.join(data_base, 'sub-F001_ses-005.vtk')},

 {'skull': os.path.join(data_base, 'sub-F001_ses-010.vtk')},

 {'skull': os.path.join(data_base, 'sub-F001_ses-015.vtk')},

 {'skull': os.path.join(data_base, 'sub-F001_ses-020.vtk')},

 {'skull': os.path.join(data_base, 'sub-F001_ses-025.vtk')},

 {'skull': os.path.join(data_base, 'sub-F001_ses-030.vtk')},

 {'skull': os.path.join(data_base, 'sub-F001_ses-035.vtk')}]],

'visit_ages': [[0, 5, 10, 15, 20, 25, 30, 35]],

'subject_ids': [['ses-000', 'ses-005', 'ses-010', 'ses-015', 'ses-020', 'ses-025

}

template_specifications = {

'skull': {'deformable_object_type': 'polyline',

'noise_std': 0.0035,

'filename': os.path.join(data_base, 'ForInitialization__Template__FromUser.vtk

'attachment_type': 'landmark'}}

estimator_options = {'optimization_method_type': 'GradientAscent', 'max_iterations

'convergence_tolerance': 1e-5, 'initial_step_size': 1e-6,

deformetrica = dfca.Deformetrica(output_dir='output', verbosity='INFO')

deformetrica.estimate_geodesic_regression(

 template_specifications, dataset_specifications,

estimator_options=estimator_options,

A beginner’s guide to shape analysis using Def... https://medium.com/miccai-educational-initiative...

16 of 29 10/14/19, 1:42 PM

When using the Geodesic Regression model, 3 important

parameters should be defined with care:

the concentration_of_time_points which controls of the

discretization step for the geodesic. The default value is 10, but

it can be set to lower/higher values depending on the time scale

and the desired precision

the t0 attribute in the model options controls the point from

which the geodesic is computed. In practice, the provided initial

template will be the point on the geodesic at t0, hence it must

be initialized with care. By default t0’s value will be set to the

mean of the observation times

By default, the template is frozen during a geodesic regression.

It is advised to keep it that way, since estimating both the

template and the momenta of the regression can be ill-defined

The previously added estimator callback is extremely useful to

retrieve a number of metrics that can be used to evaluate the

model’s convergence. In our example, a list named

iteration_status_dictionaries is appended with updated metrics

after each estimator iteration.

We can start by exploring the dictionary keys and value types that

are used. The following code snippet should help us:

import numpy as np

def explore_dict(d):
 for k, v in d.items():

A beginner’s guide to shape analysis using Def... https://medium.com/miccai-educational-initiative...

17 of 29 10/14/19, 1:42 PM

 str = "id(dict)=%i : k=%s : v=%s"%(id(d), k,
type(v).__name__)
 if isinstance(v, np.ndarray):
 str += " : %s"%(v.shape,)
 print(str)

 if isinstance(v, dict):
 explore_dict(v)

explore_dict(iteration_status_dictionaries[-1])

This python function will output the dictionary’s unique id as well

as its containing key and value types. The output will look similar

to:

id(dict)=139864914661808 : k='current_iteration' : v=int
id(dict)=139864914661808 : k='current_log_likelihood' :
v=float id(dict)=139864914661808 : k='current_attachment' :
v=float id(dict)=139864914661808 : k='current_regularity' :
v=float id(dict)=139864914661808 : k='gradient' : v=dict
id(dict)=139864906988712 : k='landmark_points' : v=ndarray :
(83, 3) id(dict)=139864906988712 : k='momenta' : v=ndarray :
(83, 3)

From this console output, we now have a better understanding of

the inner structures. The metrics that are of interest are the

log_likelihood and the two gradient numpy ndarrays. These

metrics will give some insight on the method’s overall convergence.

Let’s now plot these values using matplotlib’s subplot functionality.

The following code snippet will plot 3 line graphs representing the

estimator's iteration against the log_likelihood , the

landmark_points gradients and the momenta gradients respectively.

A beginner’s guide to shape analysis using Def... https://medium.com/miccai-educational-initiative...

18 of 29 10/14/19, 1:42 PM

import numpy as np
import matplotlib.pyplot as plt

x = np.arange(1, iteration_status_dictionaries[-1]
['current_iteration']+1)

figsize=12
fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=
(figsize,figsize))
plt.xlabel('iterations')

ax1.plot(x, [it_data['current_log_likelihood'] for it_data
in iteration_status_dictionaries], label='log_likelihood')
ax1.title.set_text('log_likelihood')
ax1.grid(True)

ax2.plot(x, [np.sum(it_data['gradient']['landmark_points'],
axis=0) for it_data in iteration_status_dictionaries])
ax2.legend(['x', 'y', 'z'])
ax2.title.set_text('landmark_points gradients')
ax2.grid(True)

ax3.plot(x, [np.sum(it_data['gradient']['momenta'], axis=0)
for it_data in iteration_status_dictionaries])
ax3.legend(['x', 'y', 'z'])
ax3.title.set_text('momenta gradients')
ax3.grid(True)

plt.show()

The following plots are produced:

A beginner’s guide to shape analysis using Def... https://medium.com/miccai-educational-initiative...

19 of 29 10/14/19, 1:42 PM

Multiple plots showing the estimator’s iteration vs the log-likelihood, the landmark-points

gradients and the momenta gradients respectively

As can be seen from the above line graphs, there clearly seems to

be 3 distinct phases that can be identified:

1. From iteration 1 and 10: the log_likelihood curve is very

steep as most of the Gradient Ascent optimization steps are very

beneficial. The initial optimization step size can be modified

using the initial_step_size parameter. This will have an

impact on the size of each optimization steps that will be taken

A beginner’s guide to shape analysis using Def... https://medium.com/miccai-educational-initiative...

20 of 29 10/14/19, 1:42 PM

by the optimizer.

2. From iteration 11 and 35: the Gradient Ascent method

manages to further optimize the log_likelihood by

aggressively varying the gradients for the y and z dimensions.

3. From iteration 36 to the end: the log_likelihood is very

slowly being optimized until it reaches the pre-defined

convergence_tolerance threshold.

It is also worth noticing that the gradients have a close to 0 value

on the x dimension. This is due to the nature of our input data: the

given polylines mostly differ on the y and z dimensions.

As with the CLI, several output files are generated and stored

within an output folder (see the previous section for more details).

These files can be imported into a vtk viewer. Here is an animation

built using ParaView:

A beginner’s guide to shape analysis using Def... https://medium.com/miccai-educational-initiative...

21 of 29 10/14/19, 1:42 PM

Geodesic regression animation generated from ParaView

Note: This example can also be found at this Google Colab link.

. . .

Using the command line tool: Registration
In a more medical context, Deformetrica can be used on to perform

a Registration. In practice, the following example will be using a

set of 3D T1 weighted Magnetic Resonance Images (MRIs). A full-

resolution (7 million voxels) MR image registration can be done in

2–3 minutes, with a low GPU memory footprint. Note that these

computations are extremely intensive due to the nature of the data.

It is advised to accelerate the computation using a CUDA capable

GPU.

A beginner’s guide to shape analysis using Def... https://medium.com/miccai-educational-initiative...

22 of 29 10/14/19, 1:42 PM

Example MR Image with a resolution of 181 x 217 x 181

Using the previously downloaded example files given in the

registration/images/3d/brains folder, we only have to run the

following command:

$ deformetrica estimate model.xml data_set.xml -p
optimization_parameters.xml -v INFO

A beginner’s guide to shape analysis using Def... https://medium.com/miccai-educational-initiative...

23 of 29 10/14/19, 1:42 PM

This will produce an output folder containing numerous output

files.

The following animation illustrates the result of the previously run

command:

A beginner’s guide to shape analysis using Def... https://medium.com/miccai-educational-initiative...

24 of 29 10/14/19, 1:42 PM

3D MRI Registration

A beginner’s guide to shape analysis using Def... https://medium.com/miccai-educational-initiative...

25 of 29 10/14/19, 1:42 PM

. . .

Final thoughts

Extra features

As was shown in the previous sections, Deformetrica is a versatile

shape analysis tool that can be used as stand-alone software using

its CLI or embedded within a Python application using the

dedicated API. For the sake of simplicity, only 3 models were

shown in this article. Note that many other models are available:

Bayesian Atlas, Affine Atlas, Longitudinal Atlas to name a few.

Also, it is possible to use the compute command to run a standalone

“shoot” or a “parallel transport”.

Kernels

It is important to note that many optimizer and core model options

are configurable. One of these configurable options is the

computation kernel that can be used to perform the deformations.

Two kernels are available: a PyTorch and a PyKeops version. Both

can be used interchangeably without impacting the end-result. It

is, however, advised to use the Keops kernel when dealing with

large-data as it has a better memory footprint.

A beginner’s guide to shape analysis using Def... https://medium.com/miccai-educational-initiative...

26 of 29 10/14/19, 1:42 PM

Numpy vs PyTorch vs Keops

Scaling up Gaussian convolutions on 3D point clouds - KeOps

Let's compare the performances of PyTorch and KeOps on simple Gaussian RBF
kernel products, as the number of samples…

www.kernel-operations.io

When defining the kernel to use, a crucial parameter is the kernel-

size. This parameter is data-specific and will define how precise the

deformation will be. Too big a value will result in coarser

deformations as opposed to too low a value that will result in more

fine-grained deformations but at a much higher computational

cost.

CUDA acceleration

A beginner’s guide to shape analysis using Def... https://medium.com/miccai-educational-initiative...

27 of 29 10/14/19, 1:42 PM

At any moment, if available, the computations can be done on a

CUDA device. By default, Deformetrica will detect if a CUDA device

is available on the system, if so, the kernel operations will be

conducted on the GPU. It is also possible to use the gpu-mode

option to manually define what mode will be used. This option can

take the values: Auto , Full , None or Kernel .

. . .

Source code availability
The complete source code for the above examples can be found

hosted on Google Colab. This enables a simple and fast deployment

for testing of the said examples:

Deterministic Atlas

Geodesic Regression

. . .

References
[Deformetrica]: Official website

[Keops library]: Official website

[Durrleman et al. 2014]: Morphometry of anatomical shape

complexes with dense deformations and sparse parameters

[Gori et al. 2017]: Bayesian atlas model

A beginner’s guide to shape analysis using Def... https://medium.com/miccai-educational-initiative...

28 of 29 10/14/19, 1:42 PM

[Fishbaugh et al. 2017]: Geodesic regression model

[Louis et al. 2018]: Parallel transport model

[Bône et al. 2018a]: Longitudinal atlas model

[Bône et al. 2018b]: Summary of the functionalities available in

Deformetrica

Python Statistical Learning

Discover Medium

Welcome to a place where
words matter. On Medium,
smart voices and original
ideas take center stage - with
no ads in sight. Watch

Make Medium yours
Follow all the topics you care
about, and we’ll deliver the
best stories for you to your
homepage and inbox. Explore

Become a member

Get unlimited access to the
best stories on Medium —
and support writers while
you’re at it. Just $5/month.
Upgrade

About Help Legal

A beginner’s guide to shape analysis using Def... https://medium.com/miccai-educational-initiative...

29 of 29 10/14/19, 1:42 PM

