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In this tutorial we aim to provide a simple step-by-step guide to

anyone who wants to work on the problem of skin lesion

classification regardless of their level or expertise; from medical

doctors, to master students and more experienced researchers.

The entire code can be found in this repository in form of a jupyter

notebook.

Skin cancer is one of the most common cancer not only in the

United States, but also worldwide, with almost 10.000 people in

the U.S. being diagnosed with it every day. Even though the

number of deaths associated with Melanoma is predicted to

increase by 22% in the next year, early detection of the disease can

lead to 99% 5-year survival rate [1–3].

Computer aided diagnostic systems can drastically aid physicians
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to detect skin cancer in the early stages and avoid unnecessary

biopsies, improving patient care and reducing cost [4]. Moreover

portable systems [5] and even mobile apps [6], without of course

replacing physicians, assist people by providing suggested

diagnoses that can act as a warning sign and lead to the early

detection of skin lesions.

Since 2017, MICCAI has successfully hosted the ISIC Challenge

[7–9] for the segmentation and classification of skin lesions,

highlighting the impact AI could have in this field and steering

researchers towards this direction. Moreover, every year the

available skin lesion datasets become larger. Recently the publicly

available HAM10000 [10] has been characterised as the ‘Skin

Lesion MNIST’ [11] and made a significant leap towards solving

the limited data problem regarding skin lesion classification.

We chose to work on the publicly available HAM10000 dataset to

allow reproducibility and will be providing additional tips and

tricks to tackle challenges such as overfitting, class imbalance,

limited data and more that can be applied to a plethora of other

medical tasks as well.

The tools we will be using for this tutorial are the Deep Learning

framework PyTorch and common Python libraries for data

visualization and computations, namely NumPy, scikit-learn and

matplotlib. We chose PyTorch for this tutorial as its popularity has

grown substantially in the past year and its functions and usability

are quite intuitive.
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Using this guide you will learn:

How to load the data, visualise it and uncover more about the

class distribution and meta-data.

How to utilise architectures with varying complexity from a few

convolutional layers to hundreds of them.

How to train a model with appropriate optimisers and loss

functions.

How to rigorously test your trained model, providing not only

metrics such as accuracy but also visualisations like confusion

matrix and Grad — Cam.

How to analyse and understand your results.

To conclude with, we will provide a few more tips that are usually

utilised by the participants of the ISIC Challenges, that will help

you increase your model’s performance even more so that you can

beat our performance and explore more advanced training

schemes.

Data, data, data
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The very first and most important task is to collect data that

corresponds to our problem. Since we want to design an algorithm

that can identify skin lesions, e.g. a melanoma, we have to find or

create a dataset that contains many examples of the things we
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want to detect. Luckily we do not have to take thousands of skin

lesion pictures ourselves, since someone else already created a

dataset for us that we can use for free.

The HAM10000 (“Human Against Machine with 10000 training

images”) dataset which contains 10,015 dermatoscopic images

was made publicly available by the Harvard database on June

2018. A metadata file with demographic information of each

lesion is additionally provided. More than 50% of lesions are

confirmed through histopathology (histo), the ground truth for the

rest of the cases is either follow-up examination (follow_up),

expert consensus (consensus), or confirmation by in-vivo confocal

microscopy (confocal)

You can download the dataset from here. You have to download all

3 Files.

The 7 classes of skin cancer lesions included in this dataset are:
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1. Melanocytic nevi (nv)

2. Melanoma (mel)

3. Benign keratosis-like lesions (bkl)

4. Basal cell carcinoma (bcc)

5. Actinic keratoses (akiec)

6. Vascular lesions (vas)

7. Dermatofibroma (df)

Metadata

The HAM10000 dataset comes with a corresponding file

(HAM10000_metadata.csv) that contains additional information

of the dataset — the most important one for us is the type of skin

lesion that is depicted in each image. It is important to understand

the information in the metadata to decide which parts of the

metadata we can use as a feature for our learning process. Here,

we visualize the metadata of the dataset, namely the features age,

gender, localization on the body and cell type.
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Metadata

Now, let’s see how the data is distributed based on each feature.
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# importing metadata

data_dir = os.getcwd() + "/HAM10000"

metadata = pd.read_csv(data_dir + '/HAM10000_metadata.csv')

# label encoding the seven classes for skin cancers

le = LabelEncoder()

le.fit(metadata['dx'])

LabelEncoder()

print("Classes:", list(le.classes_))

metadata['label'] = le.transform(metadata["dx"]) 

metadata.sample(10)
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# Getting a sense of what the distribution of each column looks like

fig = plt.figure(figsize=(15,10))

ax1 = fig.add_subplot(221)

metadata['dx'].value_counts().plot(kind='bar', ax=ax1)

ax1.set_ylabel('Count')

ax1.set_title('Cell Type');

ax2 = fig.add_subplot(222)

metadata['sex'].value_counts().plot(kind='bar', ax=ax2)

ax2.set_ylabel('Count', size=15)

ax2.set_title('Sex');

ax3 = fig.add_subplot(223)

metadata['localization'].value_counts().plot(kind='bar')

ax3.set_ylabel('Count',size=12)

ax3.set_title('Localization')

ax4 = fig.add_subplot(224)

sample_age = metadata[pd.notnull(metadata['age'])]

sns.distplot(sample_age['age'], fit=stats.norm, color='red');

ax4.set_title('Age')

plt.tight_layout()
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As mentioned above, we are going to use the “cell types” as labels

for our images, since we want to classify the specific skin lesion to

tell whether it is cancerous or not. So, from now on we will refer to

“cell type” as the “class” of the specific lesion. We are not

considering the other meta information. Nevertheless, we want to

mention that it is possible to use the remaining metadata for

population studies or other network approaches which rely on

meta information.

From the distribution it is evident that there is a severe imbalance

in the number of images for each cell type. There are many more

images for the lesion type “Melanocytic Nevi” or “nv” (6705

/10015) compared to other types like “dermatofibroma” or “df”

(115/10015). This is a usual occurrence for medical datasets due

to the limited amount of patients. This is a perfect example of why

it is so important to analyze the data beforehand.
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Data Loading and Pre-processing

After downloading the datasets, we need to alter the dataset

structure into a format which enables us to load the data more

easily. We will be using PyTorch ImageFolder function to load the

images, which achieves an optimized and faster processing of the

data. Towards this end, we utilize the following script to segregate

the images into folders of their respective classes.

Overcome Class Imbalance: Median Frequency Balancing

It is very essential to address the issue of class imbalance we

detected from the metadata analysis. If we don’t explicitly take

measures against it, the results will be suboptimal as the network
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import os

import shutil

# A path to the folder which has all the images:

data_dir = os.getcwd() + "/HAM10000/"

# A path to the folder where you want to store the rearranged images:

dest_dir = os.getcwd() + "/HAM10K"

# Read the metadata file:

metadata = pd.read_csv(data_dir + '/HAM10000_metadata.csv')

label = ['bkl', 'nv', 'df', 'mel', 'vasc', 'bcc', 'akiec']

label_images = []

# Copy the images into new folder structure:

for i in label:

    os.mkdir(dest_dir + str(i) + "/")

    sample = metadata[metadata['dx'] == i]['image_id']

    label_images.extend(sample)

for id in label_images:

        shutil.copyfile((data_dir + i + "/"+ id +".jpg"), (dest_dir + i + "/"+
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will be biased towards the over-represented classes and won’t have

the chance to learn the distributions of the under-represented

ones. So, as we will explain in the section about loss functions, we

assign weights to each class within our loss function to allow for

balanced training among classes.

To calculate the class weights, we employ a technique called

Median Frequency Balancing [14].

This way, we get a weight for each class of images to compensate

for the amount of training examples.
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label = [ 'akiec', 'bcc','bkl','df','mel', 'nv',  'vasc']

def estimate_weights_mfb(label):

    class_weights = np.zeros_like(label, dtype=np.float)

    counts = np.zeros_like(label)

for i,l in enumerate(label):

        counts[i] = metadata[metadata['dx']==str(l)]['dx'].value_counts()[0]

    counts = counts.astype(np.float)

    median_freq = np.median(counts)

for i, label in enumerate(label):

        class_weights[i] = median_freq / counts[i]

return class_weights

classweight= estimate_weights_mfb(label)

for i in range(len(label)):

print(label[i],":", classweight[i])
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Data Visualization

Let’s display 5 images per class to visually understand the task at

hand and see if there are any similarities between classes that

could make the task more challenging.
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#Visualizing the images

label = [ 'akiec', 'bcc','bkl','df','mel', 'nv',  'vasc']

label_images = []

classes = [ 'actinic keratoses', 'basal cell carcinoma', 'benign keratosis-like lesions

'dermatofibroma','melanoma', 'melanocytic nevi', 'vascular lesions

fig = plt.figure(figsize=(20, 20))

k = range(7)

for i in label:

    sample = metadata[metadata['dx'] == i]['image_id'][:5]

    label_images.extend(sample)

for position,ID in enumerate(label_images):

    labl = metadata[metadata['image_id'] == ID]['dx']

    im_sample = data_dir + "/" + labl.values[0] + f'/{ID}.jpg'

    im_sample = imageio.imread(im_sample)

    plt.subplot(7,5,position+1)

    plt.imshow(im_sample)

    plt.axis('off')

if position%5 == 0:

        title = int(position/5)

        plt.title(classes[title], loc='left', size=20)

plt.tight_layout()
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This also gives us a first impression of the difficulty of our task. For

us it is easy to differentiate between a cat and a dog since we have

gained so much experience in distinguishing those two “classes”

during our life. On the other hand it is not trivial for a non-medical

person to distinguish the two classes “melanoma” and “vascular

lesions” due to the lack of experience in this field.

Data Augmentation

Data augmentation is an essential tool for populating our dataset
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with more training samples and increase the variance our network

is exposed to during training. Methods such as translation,

rotation, viewpoint, or illumination changes (or a combination

of the above) can help our model become robust to small

alterations in the images.

Another important step within the data preprocessing pipe-line is

data normalization, which ensures that each input parameter

(pixel intensity, in this case) is at a common scale. Normalization

makes convergence of the model to a better performing state faster

while training the network. Data normalization is done by

subtracting the mean of the color channel intensity from each pixel

and then dividing the result by the standard deviation of the same

channel. As we will see later, it is also a key step towards utilizing

transfer learning (i.e. initialize our network weights with values

previously calculated from training on a different dataset.)

Then, we apply the following data augmentation techniques:

Flipping the image horizontally: RandomHorizontalFlip()

Rotating the image 60 degrees: RandomRotation() . 60 degrees

is chosen as a best practice. You can experiment with other

angles as well.

The augmentations are applied using the transform.Compose()

function of Pytorch. Take note, we only augment the training set.
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Train, Test and Validation Splits

One of the best practices of training a neural network is to split the

data into 3 parts — Train, Validation and Test. The purpose of

splitting data into three different categories is to avoid overfitting

and improve generalization of the model.

Training Dataset: The part of the dataset which is used to train

the final model your pipeline uses when exposed to new data.

Validation Dataset: The part of the dataset that is used to provide
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data_dir = os.getcwd() + "/HAM10000"

# normalization values for pretrained resnet on Imagenet

norm_mean = (0.4914, 0.4822, 0.4465)

norm_std = (0.2023, 0.1994, 0.2010)

batch_size = 10

validation_batch_size = 10

# We compute the weights of individual classes and convert them to tensors

class_weights = estimate_weights_mfb(label)

class_weights = torch.FloatTensor(class_weights)

transform_train = transforms.Compose([

                    transforms.Resize((224,224)),

                    transforms.RandomHorizontalFlip(),

                    transforms.RandomRotation(degrees=60),

                    transforms.ToTensor(),

                    transforms.Normalize(norm_mean, norm_std),

                    ])

transform_test = transforms.Compose([

                    transforms.Resize((224,224)),

                    transforms.ToTensor(),

                    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994
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an unbiased evaluation of a model fit on the training dataset while

tuning model hyperparameters (like learning rate, etc.).

Test Dataset: The part of the dataset that is not used for the actual

training process. It provides an unbiased evaluation data for a final

trained model. The test dataset provides the gold standard used to

evaluate the model.

Rules for splitting

Note that in medical imaging datasets, the split should always

been done patient-level, meaning images of the same patient

should either belong to the train or test set but not be shared

among them.

In case of class imbalance we should make sure that an equal

percentage of every class is included in each of the splits. (for

example if we only have 10 images for Class A and our splitting

has been defined as 70%/10%/20% we need to make sure 7

images of class A are used for training, 1 for validation and 2 for

testing.)

We split our entire dataset into 3 parts while preserving the class

balance:

Train: 64%

Test: 20%

Validation: 16%
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test_size = 0.2

val_size = 0.2

class Sampler(object):

"""Base class for all Samplers.

"""

def __init__(self, data_source):

pass

def __iter__(self):

raise NotImplementedError

def __len__(self):

raise NotImplementedError

class StratifiedSampler(Sampler):

"""Stratified Sampling

    Provides equal representation of target classes

"""

def __init__(self, class_vector):

"""

        Arguments

        ---------

        class_vector : torch tensor

            a vector of class labels

        batch_size : integer

            batch_size

"""

self.n_splits = 1

self.class_vector = class_vector

self.test_size = test_size

def gen_sample_array(self):

try:

from sklearn.model_selection import StratifiedShuffleSplit

except:

print('Need scikit-learn for this functionality')

import numpy as np

        s = StratifiedShuffleSplit(n_splits=self.n_splits, test_size=self.test_size)

        X = th.randn(self.class_vector.size(0),2).numpy()

        y = self.class_vector.numpy()

        s.get_n_splits(X, y)
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Now we use the Pytorch data loader to load the dataset into the

memory.

Now, let’s see some of the loaded training images.
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SubsetRandomSampler = torch.utils.data.sampler.SubsetRandomSampler

dataset = torchvision.datasets.ImageFolder(root= data_dir, transform=transform_train)

train_samples = SubsetRandomSampler(train_indices)

val_samples = SubsetRandomSampler(val_indices)

test_samples = SubsetRandomSampler(test_indices)

train_data_loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, 

validation_data_loader = torch.utils.data.DataLoader(dataset, batch_size=validation_batch_size

dataset = torchvision.datasets.ImageFolder(root= data_dir, transform=transform_test)

test_data_loader = torch.utils.data.DataLoader(dataset, batch_size=validation_batch_size, 
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Train Images

De�ine a Convolutional Neural Network
A neural network is a model that maps input data to a defined

target in a self-learned fashion. This is achieved by the architecture

of the network. Neural Networks consist of different layers that are

applied in sequence to the input data. Each layer consists of several

“neurons”. Each neuron calculates a weighted sum of the previous

layer’s outputs, and then applies a non-linear transformation.
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# functions to show an image

fig = plt.figure(figsize=(10, 15))

def imshow(img):

    img = img / 2 + 0.5 # denormalize change this

    npimg = img.numpy()

    plt.imshow(np.transpose(npimg, (1, 2, 0)))

# get some random training images

dataiter = iter(train_data_loader)

images, labels = dataiter.next()

# show images

imshow(torchvision.utils.make_grid(images))

# print labels

print(' '.join('%5s, ' % classes[labels[j]] for j in range(len(labels))))
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These weights are what is learned during the training of the

network. The non-linearities can produce diverse effects, e.g.

scaling the output to a significant magnitude only when the sum

surpasses a certain threshold (sigmoid), or making sure the sums

can not become negative (relu). The exact choice is often just an

implementation detail, but their existence is essential. Without

them, the only thing a network would ever be able to learn are

linear transformations which are too restrictive for real-world

problems.

This is relatable to the process of neuron activation in the brain.

Finally, the output of the network is compared to a target value

(the known ground truth of the task at hand, e.g. classification of a

cat). Depending on if the network gave the correct answer the

network weights of every neuron are updated so that the system

performs better in the next run.
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Neural Network visually explained (Source: YouTube, 3Blue1Brown: DeepLearning Chapter 1)

For Images we typically use Convolutional Neural Networks

(CNNs) that use trained image kernels to extract features from an

image.

If you want to know more about CNNs we can recommend the

Medium post by Mathew Steward — Simple Introduction to

Convolutional Neural Networks.

To begin with, we will use the LeNet [14] architecture, primarily

used for optical and handwritten character recognition. It is a

simple, straightforward architecture, suitable for educational

purposes but, as you will see, it is not deep enough to achieve a

state-of-the-art performance on challenging tasks, such as the one

316 views
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at hand.

LeNet Architecture

LeNet comprises of two Convolution and Max Pooling Layers,

followed by three Linear Layers with the last layer having the
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num_classes = len(classes)

class LeNet(nn.Module):

def __init__(self):

super(LeNet, self).__init__()

self.conv1 = nn.Conv2d(3, 6, (5,5), padding=2)

self.conv2 = nn.Conv2d(6, 16, (5,5))

self.fc1   = nn.Linear(16*54*54, 120)

self.fc2   = nn.Linear(120, 84)

self.fc3   = nn.Linear(84, num_classes)

def forward(self, x):

        x = F.max_pool2d(F.relu(self.conv1(x)), (2,2))

        x = F.max_pool2d(F.relu(self.conv2(x)), (2,2))

        x = x.view(-1, self.num_flat_features(x))

        x = F.relu(self.fc1(x))

        x = F.relu(self.fc2(x))

        x = self.fc3(x)

return x

def num_flat_features(self, x):

        size = x.size()[1:]

        num_features = 1

for s in size:

            num_features *= s
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output dimension “num_classes” which is in our case the number

of different skin lesions. The “forward” function receives the image

x as input and sequentially passes it through the network.

De�ine a Loss function and Optimizer

Loss Function

Training a deep neural network is the process of iteratively refining

its parameters (weights of the neurons) to improve its performance

on the given problem. This is done by the loss function, which

iteratively evaluates the predicted versus ground truth values and is

utilized towards updating the weights according to the calculated

error. We will use the Cross Entropy loss for our problem.

Cross entropy loss: The loss utilized for skin lesion classi�cation

The worse the model performs, the higher the output of the loss

function will be. An untrained model will produce random

predictions and therefore the loss function will generate a high

value. As the model improves and its predictions get more

accurate, the loss value approaches zero.

Optimizer
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The question that remains is how each weight should be changed

to improve our model’s performance. This is taken care of by an

optimizer, which aims to find a minimum for our loss function.

There are many different methods to minimize the loss function,

which are in most-cases based on the model’s gradient.

You can try this cool visualization of the comparison of different

optimizers (Source: Jaewan Yun)

In this tutorial we select Adam [16] as the optimizer of our model,

since it is one of the most commonly used and effective optimizers.

An important setting of the optimizer is the right learning rate. If

the learning rate is chosen too small the parameters of the network

will only be modified very little and finding a minimum will take

very long. On the other hand if we chose a very high learning rate

it might cause the optimizer to alter the parameters too much

(overshoot) and we might never be able to find a minimum at all.

view raw
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loss_optim.py hosted with ❤ by GitHub

import torch.optim as optim

net = LeNet()

criterion = nn.CrossEntropyLoss(weight = class_weights)

optimizer = optim.Adam(net.parameters(), lr=1e-5)
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http://uc-r.github.io/gbm_regression

We choose a learning rate of 1e-5, but this might not be a good

choice for a different problem.

Training the network
In the training stage, we can finally put together all the things we

established in the previous sections. An epoch is when every skin

lesion image in our training set is passed both forward and

backward through our network only once.

We continue training for multiple epochs, and before each epoch

our data loader always shuffles the training set so that the network

doesn’t memorize the images.
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# number of loops over the dataset

num_epochs = 30

accuracy = []

val_accuracy = []

losses = []

val_losses = []

for epoch in range(num_epochs):

    running_loss = 0.0

    correct_total= 0.0

    num_samples_total=0.0

for i, data in enumerate(train_data_loader):

# get the inputs

        inputs, labels = data

        inputs, labels = inputs.to(device), labels.to(device)

# set the parameter gradients to zero

        optimizer.zero_grad()

# forward + backward + optimize

        outputs = net(inputs)

        loss = criterion(outputs, labels)

        loss.backward()

        optimizer.step()

#compute accuracy

        _, predicted = torch.max(outputs, 1)

        b_len, corr = get_accuracy(predicted, labels)

        num_samples_total +=b_len

        correct_total +=corr

        running_loss += loss.item()

    running_loss /= len(train_data_loader)

    train_accuracy = correct_total/num_samples_total

    val_loss, val_acc = evaluate(net, validation_data_loader)

print('Epoch: %d' %(epoch+1))

print('Loss: %.3f  Accuracy:%.3f' %(running_loss, train_accuracy))

print('Validation Loss: %.3f  Val Accuracy: %.3f' %(val_loss, val_acc))

    losses.append(running_loss)
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Epoch: 1
Loss: 1.889  Accuracy:0.064
Validation Loss: 1.843  Val Accuracy: 0.095
Epoch: 2
Loss: 1.795  Accuracy:0.107
Validation Loss: 1.780  Val Accuracy: 0.114
Epoch: 3
Loss: 1.726  Accuracy:0.165
Validation Loss: 1.708  Val Accuracy: 0.255
Epoch: 4
Loss: 1.670  Accuracy:0.353
Validation Loss: 1.656  Val Accuracy: 0.406
Epoch: 5
Loss: 1.616  Accuracy:0.416
Validation Loss: 1.601  Val Accuracy: 0.486
. .
. .
. .
. .
Epoch: 29
Loss: 1.344  Accuracy:0.548
Validation Loss: 1.376  Val Accuracy: 0.548
Epoch: 30
Loss: 1.360  Accuracy:0.551
Validation Loss: 1.379  Val Accuracy: 0.563
Finished Training

To monitor the training process we plot the loss and accuracy

curves per epoch during training.

For this tutorial, we have used the Python library, matplotlib [21] to

plot the graphs. Another useful tool to plot graphs, histograms and

record images is tensorboardX [22] which additionally provides the

option for real-time monitoring of the variables that are recorded.
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epoch = range(1, num_epochs+1)

# Plot the Loss curves

fig = plt.figure(figsize=(10, 15))

plt.subplot(2,1,2)

plt.plot(epoch, losses, label='Training loss')

plt.plot(epoch, val_losses, label='Validation loss')

plt.title('Training and Validation Loss')

plt.xlabel('Epochs')

plt.legend()

plt.figure()

plt.show()

#Plot the Accuracy curves

fig = plt.figure(figsize=(10, 15))

plt.subplot(2,1,2)

plt.plot(epoch, accuracy, label='Training accuracy')

plt.plot(epoch, val_accuracy, label='Validation accuracy')

plt.title('Training and Validation Accuracy')

plt.xlabel('Epochs')

plt.legend()

plt.figure()
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The loss curves are an effective way to determine whether our

model is overfitted on training data. Overfitting can be detected

when the validation loss starts to rise while the training loss is

decreasing. It corresponds to the situation when the model

memorizes the training data instead of generalizing to unseen

images as well. An example would be the classification of a car

based on a little scratch on the window rather than focusing on the

four wheels.

In our curves we see that both training and validation losses are

decreasing smoothly, thanks to data augmentation and a large

enough train set, meaning that the model is able to generalize on

the validation set.

Evaluating the network
After training we need to evaluate how our model performs on

unseen data. For this purpose, we perform the classification of the

test dataset.

We display few images from the test set. You can see these images

are not augmented.

view raw

1

2

3

4

5

vis2.py hosted with ❤ by GitHub

fig = plt.figure(figsize=(10, 15))

dataiter = iter(test_data_loader)

images, labels = dataiter.next()

imshow(torchvision.utils.make_grid(images))

Skin Lesion Classification — An Educational Gui... https://medium.com/miccai-educational-initiativ...

30 of 42 10/14/19, 1:40 PM



We now classify every image in our test dataset. After finishing the

procedure, we obtain the following results:

Accuracy of the network on the test images: 61 %

Accuracy of actinic keratoses : 68 %
Accuracy of basal cell carcinoma : 74 %
Accuracy of benign keratosis-like lesions : 27 %
Accuracy of dermatofibroma : 49 %
Accuracy of melanoma : 61 %
Accuracy of melanocytic nevi : 68 %
Accuracy of vascular lesions :  0 %

Confusion Matrix

A confusion matrix is a summary of prediction results on a

classification problem. It can help us understand which classes are

hard to be distinguished by our model. On the x-axis we can

visualize the predictions of our model and on the y-axis the ground

truth labels. In a perfect confusion matrix all the high values would

be concentrated along its diagonal and there would be zero

elsewhere.

Here is the confusion matrix based on our model’s predictions
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compared to a perfect one.

Ours vs Ideal

Visualizing the network: Grad — Cam

Understanding the decision-making process of deep neural

networks is particularly challenging due to their complex structure.

Therefore methods that provide insight in the process are

especially valuable, particularly in the medical field.

Grad-CAM (Gradient-weighted Class Activation Mapping) [12] is a

visualisation technique that localizes and highlights the regions on

an image that mostly influenced the decision-making process of a

model. Below we visualize the comparison between a model before

and after training, regarding its interpretation of the input image.

We will use Grad Cam to get a better understanding of our network
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layers. Bright yellow colors in the heatmap mark regions where the

model focuses its attention, while darker colors show regions

which only give low activation towards the final classification.

Grad Cam with Random Weights

Before we train the model, the system has not learned yet which

parts of the image are helpful in the classification of melanoma.

Therefore, the activation map shows a random attention to

different parts of the image.
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Grad Cam with Trained Weights

After training, the network pays substantial attention to the

lesions. This is an indication that the model learned to focus on the

correct parts of the image and understands which regions are

important for the classification.

Analysis of the results

As we can see from the results of the LeNet model, our system is

not capable of processing the complexity of the given input images.

Our final accuracy on the test data was 61%. About 39% of the

images are missclassified, which is a terrible performance for any

clinical use case.

These results could be substantially improved if we opt for a

deeper, more complex network architecture than LeNet, which will

allow for a richer learning of the corresponding image features.
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Deeper network architecture and transfer
learning
A widely-used architecture called “ResNet” contains several more

processing layers and makes use of a concept called residual blocks

[13], to allow for better gradient-flow and increased learning

capacity. For a detailed description of ResNet you can see here.

To boost the performance further we leverage a model that has

already been pre-trained on the large ImageNet dataset [15]. The

ImageNet dataset is a large collection of pictures of natural and

manmade objects like animals, plants, tools, furniture etc. with

1000 different classes. Hence, our model’s initial weights are not

random anymore but instead are already optimized for image

classification. This technique is called transfer learning [19].

Results

We adapt a ResNet that was pre-trained on ImageNet, to the

classification of our skin lesion images. We need to reshape the

final layer to have the same number of outputs as the number of

classes in our dataset.

1

2

3

4

5

6

7

8

from torch import nn

num_classes = len(classes)

net = torchvision.models.resnet18(pretrained = True)

# We replace last layer of resnet to match our number of classes which is 7

net.fc = nn.Linear(2048, num_classes)

net = net.to(device)
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We see in the training results, ResNet obtains significantly better

classification accuracy on the test data compared to LeNet.

Accuracy of the network on the test images: 84 %

Accuracy of actinic keratoses : 88 %
Accuracy of basal cell carcinoma : 88 %
Accuracy of benign keratosis-like lesions : 98 %
Accuracy of dermatofibroma : 88 %
Accuracy of melanoma : 95 %
Accuracy of melanocytic nevi : 80 %
Accuracy of vascular lesions :  0 %

The confusion matrix also looks much better.
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Also, the Grad Cam proves that the network identifies the lesions

properly.

Grad Cam with ResNet trained weights

Using a deeper network and the application of transfer learning

definitely improved our classification results. However, the

accuracy of the vascular lesion class is still poor. So, there is still

room for improvement.

Tips and Tricks
Training a neural network can be a daunting task, especially for a

beginner. Here, are some useful practices to get the best out of your

network.

Training Ensembles — Combine learning from multiple

networks.
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Always go for a lower learning rate.

In cases of limited data try better augmentation

techniques[20].

Network architectures that have the appropriate depth for our

problem — too many hyperparameters could lead to

suboptimal results if we don’t have enough images.

Improving loss function and class balancing.

Conclusion
In this tutorial we learned how to train a deep neural network for

the challenging task of skin-lesion classification. We experimented

with two network architectures and provided insights in the

attention of the models. Additionally, we achieved 84% overall

accuracy on HAM10000 and provided you with more tips and

tricks to tackle overfitting and class imbalance.

Now you have all the tools to not only beat our performance and

participate in the exciting MICCAI Challenges, but to also solve

many more medical imaging problems.

Happy training!
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