Challenges in Radiology image data analysis

KN Manjunath PhD

Faculty in Computer Science and Engineering, Manipal Academy of Higher Education (Formerly Consultant, SIEMENS Healthineers, Bengaluru), <u>kn.manjunath@ieee.org</u>

Presentation outline

Image

MIP applications (1/3) – Image capture

•	Header
	i i caaci

Matrix of intensities

Display intensities

Name : WaterLillies.jpg
Location : xyz lake
Time : 16.20
Photographer Name: Abc
Size : 100 x 100
Resolution : 200 dpi

File.jpg

File.dcm/.ima

Name : Pulmo
Location : Abdomen
Pixel Size : (1mm x 1 mm)
Patient Name : xyz
Size : 100 x 100
Bits used per pixel : 16

CT findings are reported based on the Hounsfield Units (HU) – the tissue intensity, the texture and shape. $\frac{7}{21}/2020$

	22	87	34	6	59	19	9	93		17	39	93	3	
	38	48	10	1	18		Э	83		84	95	98	3	
	22	74	82	1	19	20	C	48		81	85	01		-
	38	82	38	1	38	75		57		29	01	28	3	
	47	57	93	6	59	96	6	37		37	91	38	3	
	47	75	29	()2	27		95		57	67	69)	
	98	85	27	8	35	94	4	74		34	12	23	3	
Γ	-1024	024 -1000 2000 1		150	500 1		500		L500	1500	20	000		
	3000 1500 3000			-100	00	20	2000		3000	-1000	30	000		
Γ	3000	1500	-1000)	300	0	20	000		3000	-1000	30	000	

-1000

-1000

-1000

In CT image:

- Polyp: **+54 ± 5***HU*,
- Lipoma (fat): **-89±10***HU*,
- High density contrast: **+130***HU*
- Air: **-1000±10***HU* **[3]**3

Fig 1: Image header and pixel details of a jpg image and a DICOM image (Source: SIEMENS customer magazine, 2018)

-1000

-400

-1000

-400

MIP applications (2/3) – Modalities

MRI

PET

СТ

Fig 2: Different medical imaging modalities (Source of CT, MRI, PET, US - SIEMENS Medical Solutions, Erlangen)

US

Thermogram (Source: Matzinger Institure of Healing)

OCT (Source: Ophthalmic Photographers' Society)

Mathematics and image processing remains same, only physics, image acquisition method and image interpretation differs in all modalities.

MIP applications (3/3) – CAD systems

The great challenge is validating the information from data and extracting the relevant information for analysis. Example,

Customer (Radiologist) has the requirement in inception phase

I want to know the set of images which have good contrast of the tissues.

CAD schemes typically consist of the following key steps:

- 1) Apply automated image analysis to extract a vector of *quantitative features* to characterize the relevant image content,
- 2) Apply a *pattern classifier* to determine the category to which the extracted feature vector may belong

Radiomics:

In the field of medicine, *radiomics* is a method that extracts large amount of features from radiographic medical images using *data-characterisation* algorithms

During Image Preprocessing:

Extracting the best projection data and the right combination of image reconstruction technique for better 2D image generation

During Image Post processing (Summers, 2012, 10.1016/j.media.2012.02.005) Computer aided detection (**CAD**_e), and Computer Aided Diagnosis (**CAD**_x)

7/21/2020

Fig 3: The appearance of tumor cells on axial CT image and the boundary of the large intestine on axial CT

Radiology image source (1/3)

Cancer Imaging Archive https://www.cancerimagingarchive.net/

CT Medical Images https://www.kaggle.com/kmader/siim-medical-images

NCBI – Medical Image Databases https://www.ncbi.nlm.nih.gov/pmc/articles/PMC61234/

NIH Database of 100,000 Chest X-Rays https://nihcc.app.box.com/v/ChestXray-NIHCC

Open-Access Medical Image Repositories http://www.aylward.org/notes/open-access-medicalimage-repositories

The Berkeley Segmentation Dataset and Benchmark https://www2.eecs.berkeley.edu/Research/Projects/CS/ vision/bsds/

Online Medical Images http://www.onlinemedicalimages.com/index.php/en/

UCL – Medical Image Repositories https://www.ucl.ac.uk/child-health/supportservices/library/resources-z/medical-image-repositories

DERMOFIT IMAGE LIBRARY (skin lesion images)

universities https://licensing.eri.ed.ac.uk/i/software/dermofitimage-library.html

Cancer facts and figures (Siegel R, 2020) gives the cancer statistics of all anatomies and all geographical areas (countrywise)

Freely downloadable radiology images from

radiology center

and

Radiology image source (2/3) – NCI Dataset

• Dataset: More than 10TB of CT. MRI, PET and RT Objects. Maintained by National Institute of Health (NIH), National Cancer Institute (NCI), Walter Reed Army Medical center (WRAMC), and Washington School of Medicine (WSM), United States.

• Procedure to download

- Install the downloader
- Install Jdk latest
- Select the dataset and download manifest file
- Open manifest file, UI pops up
- Select the folder and click download images

• Dataset description

CPTAC-GBM

Created by Tracy Nolan, last modified by natasha honomichl on Jun 18, 2020

Summary

This collection contains subjects from the National Cancer Institute's <u>Clinical Proteomic Tumor Analysis</u> <u>Consortium</u> Glioblastoma Multiforme (CPTAC-GBM) cohort. CPTAC is a national effort to accelerate the understanding of the molecular basis of cancer through the application of large-scale proteome and genome analysis, or proteogenomics. Radiology and pathology images from CPTAC Phase 3 patients are being collect and made publicly available by The Cancer Imaging Archive to enable researchers to investigate cancer 7/22/2020

• Acknowledgements: Acknowledge the dataset providers and cite their publications

Data Access Detailed Description Citations & Data Usage Policy Versions

Data Access

Click the **Download** button to save a ".tcia" manifest file to your computer, which you must c NBIA Data Retriever . Click the **Search** button to open our Data Portal, where you can browse collection and/or download a subset of its contents.

Data Type	Download all or Query/Filter
Images (DICOM, 39.8 GB)	Ownload Q Search
Tissue Slide Images (SVS, 87 GB)	Ownload Q Search
Clinical Data API (JSON - more info)	O Download
Discovery Study Proteomics/Clinical Data (external)	CPTAC Data Portal (Georgetown)Proteomic Data Commons
Genomics/Clinical Data (External)	Genomic Data Commons

MAHE, Manipal

©Manjunath K N

Radiology image source (3/3) – Grand challenge DB

7/21/2020

Data collection (1/3) – Big data

Why is data processing so important?

Big Data demands cost effective, innovative forms of information processing for enhanced insight and decision making.

(Image source: IBM Corp)

Dimensions and Challenges

- Velocity: Thousands of images hits the PACS server every minute. Data must be analyzed immediately for necessary doctor's intervention
- Volume: Dataset is growing in GB, PB
- Variety: Structured and semi structured data. Clinical notes, imaging, audio transcriptions, EEG
- Veracity and Validity: Abnormality, wrong patient details, bias and noise in images and data
- Volatility: Till what time I have to store these images (till 2025? 2050? or forever)
- Variability: When the scanner halts or when patient moves (induces disturbances in images)

Data collection (2/3) – DICOM format

- Radiology images are in **DICOM** format ٠ (for CT, MRI, PET, SPECT, RT)
- Each DataElement has one row on ٠ information shown on the right.
- They are protocol 3.3 (NEMA 2020b • version) standard files
- File consists of stream of bytes which ٠ are parsed into different logical entities.
- For example, Patient Name, Age, ٠ Gender, ID, DOB constitutes Patient Module
- Using incomplete dataset is of no use ٠
- Classify them based on important parameters (slide 12). This helps in empirical testing.

Tag	Description	VR	VM	Value	Length
0002,0000	Group Length	UL	1	198	4
0002,0001	File Meta Information Version	OB	1	00 01	2
0002,0002	Media Storage SOP Class UID	UI	1	1.2.840.10008.5.1.4.1.1.481.5	30
0002,0003	Media Storage SOP Instance UID	UI	1	1.3.6.1.4.1.14519.5.2.1.1706.8040.21461987829294752331	9-64
0002,0010	Transfer Syntax UID	UI	1	1.2.840.10008.1.2	18
0002,0012	Implementation Class UID	UI	1	1.2.40.0.13.1.1.1	18
0002,0013	Implementation Version Name	SH	1	dcm4che-1.4.35	14
0008,0005	Specific Character Set	CS	1	ISO_IR 100	10
0008,0012	Instance Creation Date	DA	1	20011012	8
0008,0013	Instance Creation Time	TM	1	163444	6
0008,0016	SOP Class UID	UI	1	1.2.840.10008.5.1.4.1.1.481.5	30
0008,0018	SOP Instance UID	UI	1	1.3.6.1.4.1.14519.5.2.1.1706.8040.21461987829294752331	9-64
0008,0020	Study Date	DA	1	20011120	8
0008,0030	Study Time	TM	1		0
0008,0050	Accession Number	SH	1	2819497684894126	16
0008,0060	Modality	CS	1	RTPLAN	6
0008,0070	Manufacturer	LO	1	ADAC	4
0008,0090	Referring Physician's Name	PN	1		0
0008,1030	Study Description	LO	1	RT SIMULATION	14
0008,1090	Manufacturer's Model Name	LO	1	Pinnacle3	10
0008,1110	Referenced Study Sequence	SQ	1	FE FF 00 E0 FF FF FF FF 08 00 50 11 18 00 00 00 31 2E 32 2	2E 120
0010,0010	Patient's Name	PN	1	HNSCC-01-0003	14
0010,0020	Patient ID	LO	1	HNSCC-01-0003	14
0010,0030	Patient's Birth Date	DA	1		0
0010,0040	Patient's Sex	CS	1	M	2
0012,0062	Not in Dictionary	UN	1	59 45 53 20	4
0012,0063	Not in Dictionary	UN	1	50 65 72 20 44 49 43 4F 4D 20 50 53 20 33 2E 31 35 20 41	6E 46
0012,0064	Not in Dictionary	UN	1	FE FF 00 E0 FF FF FF 08 00 00 01 06 00 00 00 31 31 33 3	1 662
0013,0010	Private Creator	LO	1	CTP	4
0013,1010	Not in Dictionary	UN	1	48 4E 53 43 43 20	6
0013,1013	Not in Dictionary	UN	1	31 37 30 36 38 30 34 30	8
0018,0015	Body Part Examined	CS	1	HEADNECK	8
0018,1020	Software Versions	LO	2	9.8/9.8	8
I					

7/21/2020

10

Data collection (3/3) – Methods

- **Data acquisition and validation methods** Check for image acquisition protocols, approval of these dataset, whether single center or multi center scans, clinical trials or mass screening etc.
- Data Format and Usage Notes Check whether images are in DICOM format (.dcm/.ima)
- Data selection decide on samples (n in N), apply sampling techniques (structured, quota, systematic etc.)
- **Data collection –** Collection method (questionnaire, observing, first hand collection etc..)
- Data analysis and processing
 - ✓ **Data analysis –** Check *reliability*, *suitability* (*artefact and noise*), and *adequacy* of images
 - ✓ **Classification** Classify them into groups based on important parameters of interest
 - ✓ Data Validation DICOM images validation against Standard PS3.3 (2020b)

Data Analysis (1/4) - Classification

1	SubjectID	Patient ID	DICO M validation	Metal artifact	Polyp found	Slice thickness kYp	mA	Contrast	pixel spacing	Filter Kernel	lmage dimension	Patient position	Slices	Colon segment	Age Gender	Ma nufac ture r		Description
2	SD VC 003M	1.3.6.1.4.1.9328.50.6.554			No	2.5 120	240		0.703125	SOFT	512,512	FFS,FFP	434,453		40 M			
з	SD VC 006M	1.3.6.1.4.1.9328.50.6.3294			Yes	2.5 120	240		0.730469	SOFT	512,512	FFS,FFP	437,436		60 M			
4	SD VC 008M	1.3.6.1.4.1.9328.50.6.4247			Yes	2.5 120	240		0.681641	SOFT	512,512	FFS,FFP	437,424		50 M			
5	SD VC 010M	1.3.6.1.4.1.9328.50.6.5503			Yes	2.5 120	240		0.755859	SOFT	512,512	FFS,FFP	457,465		70 M			
6	SD VC 012M	1.3.6.1.4.1.9328.50.6.6267			No	2.5 120	240		0.726562	SOFT	512,512	FFS,FFP	410,423		60 M			
7	SD VC 015M	1.3.6.1.4.1.9328.50.6.8321			Yes	2.5 120	240		0.789062	SOFT	512,512	FFS,FFP	420,432		70 M			
8	SD VC 016M	1.3.6.1.4.1.9328.50.6.8943			Yes	2.5 120	240		0.703125	SOFT	512,512	FFS,FFP	441,460		70 M			
180	1.3.6.1.4.1.9328.50.4.0001	1.3.6.1.4.1.9328.50.4.0001	Exception	No	Yes	1 120	280		0.78125	B30F	512,512	FFS,FFP	70,604		59 F	Siemens Sensation 64	24ACRIN_Colo_IRB2415-04	
																	W/O CONTRAST	
181	1.3.6.1.4.1.9328.50.4.0040	1.3.6.1.4.1.9328.50.4.0040	Exception	No	Yes	1 120	120		0.80078125	B30F	512,512	FFP	604		71 M	Siemens Sensation 16	PRONE	
182	1.3.6.1.4.1.9328.50.4.0042	1.3.6.1.4.1.9328.50.4.0042	Validated	No	Yes			FT, <contrast< td=""><td>0.5703125</td><td></td><td>512,512</td><td>FFS,FFP</td><td>508,501</td><td></td><td>52 F</td><td>Siemens Sensation 16</td><td>W/O CONTRAST PRONE</td><td></td></contrast<>	0.5703125		512,512	FFS,FFP	508,501		52 F	Siemens Sensation 16	W/O CONTRAST PRONE	
183	1.3.6.1.4.1.9328.50.4.0080	1.3.6.1.4.1.9328.50.4.0080	Validated	No	Yes	1 120	100	FT, <contrast< td=""><td>0.73046875</td><td>B30F</td><td>512,512</td><td>HFS, HFP</td><td>527,531</td><td></td><td>51 M</td><td>Siemens Sensation 64</td><td>Abdomen^ACRIN_COLON_U</td><td>SE (Adult)</td></contrast<>	0.73046875	B30F	512,512	HFS, HFP	527,531		51 M	Siemens Sensation 64	Abdomen^ACRIN_COLON_U	SE (Adult)
184	1.3.6.1.4.1.9328.50.4.0123	1.3.6.1.4.1.9328.50.4.0123	Exception	No	Yes	1 120	120		0.859375	B30F	512,512	HFS,HFP	682,657		65 M	Siemens Sensation 16	JN/SMC 1619172 PRONE CO2 CONTRAST	
185	1.3.6.1.4.1.9328.50.4.0127	1.3.6.1.4.1.9328.50.4.0127	Validated	No	Yes	1 120	240		0.9765625	B30F	512,512	FFS,FFP	620,626		M	Siemens Sensation 16	Abdomen^3_COLONOGRAPH	IY
186	1.3.6.1.4.1.9328.50.4.0136	1.3.6.1.4.1.9328.50.4.0136	Validated	No	Yes	1 120	120		0.78125	B30F	512,512	FFS,FFP	565,589		M	Siemens Sensation 16	CT VIRTUAL COLONSCOPY SC	REENING
187	1.3.6.1.4.1.9328.50.4.0152	1.3.6.1.4.1.9328.50.4.0152	Validated	No	Yes	1 120	120	FT, <contrast< td=""><td>0.78125</td><td>B30F</td><td>512,512</td><td>FFS,FFP</td><td>501,501</td><td></td><td>M</td><td>Siemens Sensation 16</td><td>CT VIRTUAL COLONSCOPY SC</td><td>REENING</td></contrast<>	0.78125	B30F	512,512	FFS,FFP	501,501		M	Siemens Sensation 16	CT VIRTUAL COLONSCOPY SC	REENING
188	1.3.6.1.4.1.9328.50.4.0156	1.3.6.1.4.1.9328.50.4.0156	Validated	No	Yes	1 120	141		0.65234375	B30F	512,512	HFS, HFP	489,517		63 F	Siemens Sensation 64	Abdomen^14_SUPINE_COLO	N (Adult)
189	1.3.6.1.4.1.9328.50.4.0175	1.3.6.1.4.1.9328.50.4.0175	Validated	No	Yes	1.25 120	140		0.78125	STANDARD	512,512	FFS,FFP	533,579		54 M	GE Lightspeed 16	4.6 COLONOSCOPY (ACRIN) D	R.IYER
190	1.3.6.1.4.1.9328.50.4.0259	1.3.6.1.4.1.9328.50.4.0259	Validated	No	Yes	1.25 120	140		0.78125	STANDARD	512,512	FFS,FFP	550,540		84 M	GE Lightspeed 16	6.10 CT COLONOGRAPHY	
191	1.3.6.1.4.1.9328.50.4.0264	1.3.6.1.4.1.9328.50.4.0264	Validated	No	Yes	1 120	120	FT, <contrast< td=""><td>0.61328125</td><td>B30F</td><td>512,512</td><td>HFS, HFP</td><td>391,401</td><td></td><td>58 M</td><td>Siemens Sensation 64</td><td>Abdomen 14_SUPINE_COLO</td><td>N (Adult)</td></contrast<>	0.61328125	B30F	512,512	HFS, HFP	391,401		58 M	Siemens Sensation 64	Abdomen 14_SUPINE_COLO	N (Adult)
192	1.3.6.1.4.1.9328.50.4.0269	1.3.6.1.4.1.9328.50.4.0269	Validated	No	Yes	1.25 120	140		0.78125	STANDARD	512,512	FFS,FFP	545,533		62 M	GE Lightspeed 16	4.6 COLONOSCOPY (ACRIN) D	R.IYER
193	1.3.6.1.4.1.9328.50.4.0272	1.3.6.1.4.1.9328.50.4.0272	Validated	No	Yes	1.25 120	140		0.664062	STANDARD	512,512	FFS,FFP	464,477		54 F	GE Lightspeed 16	4.6 COLONOSCOPY (ACRIN) D	R.IYER
194	1.3.6.1.4.1.9328.50.4.0347	1.3.6.1.4.1.9328.50.4.0347	в	No	Yes	1 120	120		0.798828125	B30F	512,512	HFS, HFP	602,616		54 M	Siemens Sensation 64	Abdomen^14_SUPINE_COLO	N (Adult)
195	1.3.6.1.4.1.9328.50.4.0514	1.3.6.1.4.1.9328.50.4.0514	Exception	No	Yes	1 120	280		0.859375	B30F	512,512	FFP	576		60 M	Siemens Sensation 64	Abdomen^24ACRIN_Colo_IF (Adult)	RB2415-04
	Image	e quality		Mill	iampere				Peak kilo v	oltage (kVp)				Age gro	auc		Slice thickness	
	21, 11%	120 100			108			200 180 160 140		185		80 - 70 - 60 -		56	·			
		80 Good Bad 60	-		61		Patient				Patients	50 - 40 - 30 - 20 -		4	3	Patients	57, 30%	2.5
	1	66, 89% 40	-					40 - 20 -	0 2			10 -	0 0 0 1		4 1	0	130, 70%	1
		20	1 1 6	4 1	1	3 1		0	80 100	120		0 +	40 20 30 NO	40 60 10		\$ 		
		0	60 100 120	40 141	200 240 250	280 300			KvP	,		0.	10 11 - 20 21 - 30 31 AO 1	h." Sh." 61."	12. 82. 91. 1			
	Fig. 4: Number of datasets classified based on various CT image acquisition parameters. The classified datasets are used for empirical testing based on the parameters of interest																	

Fig. 4: Number of datasets classified based on various CT image acquisition parameters. The classified datasets are used for empirical testing based on the parameters of interest 7/21/2020 12

©Manjunath K N

Data Analysis (2/4) – Analyze the quality

Fig 4: Bad diagnostic quality in abdominal CT images (Sagital, coronal and axial views respectively (a, c, e). a) Incomplete air insufflation, c, d) Patient too large and outside the scan field of view, c, d) Streak artifact.

• Apply image quality assessment algorithms like CNR, PSNR, MTF, Noise measurement while analyzing its diagnostic quality

• Whether the intensity values on image is enough to describe a structure?

Fig 5: Accurate tissue details in abdominal CT (Manjunath K N *et. al.*, 2016,10.1166/jmihi.2016. 1786)

7/22/2020

Data analysis (3/4) – Image validation

- This is the most difficult part in the medical image research.
- The dataset is mainly checked for type 1 and type 2 attributes as per the DICOM standards.
- Even though dataset are statistically approved, still it is necessary to check the completeness as per the latest standard (PS 3.3, 2020b)
- Using incomplete dataset is unethical and meaningless
- One missing DICOM tag leads to incomplete dataset

Features:

Features are the representative candidate of the entire image (single instance learning) or entire volume (multiple instance learning). Features are selected from from *domain* perspective & from *technical* perspective

Radiological/Technical features

What we compute from an image are,

- Mean, geometrical features, morphological,
- Shape index,
- Principal curvarture
- Principal Component Analysis,
- Morphology, texture, variation in shape, orientation,
- Surface normal overlap etc..

Clinical features

- Patient demographic details
- Family history
- Disease symptomsetc..

Ultimately all these features (irrespective of their data types) are converted to numerical before data analysis

©Manjunath K N

Tools for data analysis and visualization

- pyDICOM library (open source), Tensorflow, and R
- Accort.NET Framework (open source, C# based)
- CNTK (Microsoft Corporation, USA, C# based)
- Weka 3.8.4 (Java based)
- 3D slicer (Fedoroc et. al., Harvard University)
- MITK (Dkfz, Germany, C++ based)
- Mevislab (Frauhhofer Institute, Germany)
- Syngo FastView (SIEMENS, Erlangen, Germany) (only viewer)
- DICOM Viewer (Philips, Netherlands) (only viewer)

Tools for analysis (2/6) – Reading DICOM in Python

#Program to read the DICOM files from a directory and exporting the DICOM object into xml format

#Source: https://pydicom.github.io/pydicom/stable/getting_started.html

#Modules for xml related import xml.etree.ElementTree as ET

#installed through pip install -U cmdname
import os
import glob
import pydicom
import cv2
print(__doc__)

#For reading all the files iteratively within a given path path = 'E:\Manjunath KN\Samples\ClivusChordoma'

#Specific type of files
filename = '*.dcm'

#Required for file name formatting FileNameIncrementer=1 DICOMFileName='\DICOMFile_' PNG = False

7/21/2020

#Collect the files list from the directory files=glob.glob(path+filename)

#For each file in the directory, read the DICOM file and build the XML tree structure for file in files root=ET.Element("root") doc=ET.SubElement(root,"doc")

#Read the DICOM file
ds = pydicom.dcmread(file)

#For each of the DICOM elements in the .dcm/.ima file, iterate and add the XML tags under the #DicomDataFromPython element

for elem in ds.iterall():

if str(elem.tag) == '(7fe0, 0010)':

ET.SubElement(doc, "DataElement", Description=elem.description(), tag=str(elem.tag), VR=str(elem.VR), VM=str(elem.VM), Value=(ds[0x7fe0, 0x0010]))

else:

ET.SubElement(doc,"DataElement", Description=elem.description().strip(), tag=str(elem.tag).strip(), VR=str(elem.VR).strip(), VM=str(elem.VM).strip(), Value=str(elem.value).strip())

tree=ET.ElementTree(doc)

#Write the xml tree to the formatted file name under the same directory as original DICOM files tree.write(path+DICOMFileName+ds.SOPInstanceUID+str(FileNameIncrementer)+'.xml') print(path+DICOMFileName+ds.SOPInstanceUID+str(FileNameIncrementer)+'.xml')

#Increment the counter which is used to format the xml file name

FileNameIncrementer+=1

MAHE, Manipal

¹⁷ ©Manjunath K N

Tools for analysis (3/6) – Exporting DICOM to XML

xml version="1.0"?			
	'http://www.w3.org/2001/XMLSchema" <mark>xmlns:xs</mark> i="http://www.w3.org/2001	/XMLSchem	na-instance">
<pre><patientid>SD VC-125</patientid></pre>			
<sopclassuid>1.2.840.1</sopclassuid>	0008.5.1.4.1.1.2		
<blobinformation></blobinformation>			
<blobdetails></blobdetails>		#Sample	Java Script Object Notation object
<perpendicularlines></perpendicularlines>		{	
<pre><perpendicularline></perpendicularline></pre>	<firstpoint> <x>82</x> <y>288</y> </firstpoint>	"øle	ossary":
<secondpoint> <x>8</x></secondpoint>	32 <y>284</y>	0.1	{ "ImageID": "WRAMC",
<distancebetweenty< td=""><td>woPoints>0</td><td></td><td></td></distancebetweenty<>	woPoints>0		
<td></td> <td></td> <td>"MaxHounseFieldUnit": "1320",</td>			"MaxHounseFieldUnit": "1320",
<td>></td> <td></td> <td>"MaxHounseFieldUnit":"-1024",</td>	>		"MaxHounseFieldUnit":"-1024",
<medialaxis><point> ·</point></medialaxis>	<x>82</x> <y>286</y>		"UniqueIdentifier":E:\Manjunath KN\"
<pre><lesionassociatedwit< pre=""></lesionassociatedwit<></pre>	hBlob> <point><x>83</x><y>286</y></point> <td>></td> <td>"TubeVoltage":"120",</td>	>	"TubeVoltage":"120",
<blobdiameter>35<td></td><td></td><td>\mathbf{C}</td></blobdiameter>			\mathbf{C}
< <u>SliceLocation>111.17</u>	00129999998		"BitsAllocated":"16",
<blobid>9</blobid>			"Rows":"512",
	/X> <y>288</y>		"Columns":"512",
	ation> <x>73</x> <y>269</y>		"SizeOfPixel":0.683594"
	h> <height>41</height> <x>73</x> <y>269</y> <width>35</width>		
<height>41</height>	>	,	\$
		}	
	> <point><x>88</x><y>268</y></point>	}	
<td></td> <td></td> <td></td>			
<blobarea>0<td>ea></td><td></td><td></td></blobarea>	ea>		
	Exported DICOM data (structured format) into VML a		format (comi structured)
	Exported DICOM data (structured format) into XML a		iormat (semi structured)
7/21/2020			18

©Manjunath K N

Tools for analysis (4/6) – In C#

1. Accord.NET provides statistical analysis, machine learning, image processing and computer vision methods for .NET applications (<u>http://accord-framework.net/</u>)

2. Software required

Microsoft windows 10, Visual Studio 2017 and .NET Framework 4.7.2

3. Installation in the project file: Install-Package Accord. Machine Learning - Version 3.8.2-alpha

4. After installation, package.config in Visual Studio has the following tags with dlls loaded in the project file.

```
<packages>
<package id="Accord" version="3.8.2-alpha" targetFramework="net472" />
<package id="Accord.MachineLearning" version="3.8.2-alpha" targetFramework="net472" />
<package id="Accord.Math" version="3.8.2-alpha" targetFramework="net472" />
<package id="Accord.Statistics" version="3.8.2-alpha" targetFramework="net472" />
<packages>
```

5. Technical reports and technical publications are available at http://accord-framework.net/publications.html

Souza, C.R., "<u>A Tutorial on Principal Component Analysis with the Accord.NET Framework</u>". Department of Computing, Federal University of Sao Carlos. arXiv:1210.7463. Technical Report, 2012

Tools for analysis (5/6) – Coding in C#

```
// Creates a matrix from the entire source data table
double[,] table = (dgvLearningSource.DataSource as DataTable).ToMatrix(out columnNames);
```

// Get only the input vector values (first two columns)
double[][] inputs = table.GetColumns(0, 1).ToJagged();

// Get only the output labels (last column)
int[] outputs = table.GetColumn(2).ToInt32();

```
// Specify the input variables
DecisionVariable[] variables =
```

code

sample

ee

ž

ecision

new DecisionVariable("x", DecisionVariableKind.Continuous), new DecisionVariable("y", DecisionVariableKind.Continuous),
};

```
// Create the C4.5 learning algorithm
var c45 = new C45Learning(variables);
```

```
// Learn the decision tree using C4.5
tree = c45.Learn(inputs, outputs);
```

```
// Show the learned tree in the view
decisionTreeView1.TreeSource = tree;
```

```
// Get the ranges for each variable (X and Y)
DoubleRange[] ranges = table.GetRange(0);
```

// Generate a Cartesian coordinate system
double[][] map = Matrix.Cartesian(Vector.Interval(ranges[0], 0.05), Vector.Interval(ranges[1], 0.05));

```
// Classify each point in the Cartesian coordinate system
double[,] surface = map.ToMatrix().InsertColumn(tree.Decide(map));
```

```
CreateScatterplot(zedGraphControl2, surface);
```

Decision tree code is available at

http://accord-framework.net (Source: Cesar C Souza)

All the functionalities are available through software classes, create the required instances and call the method with required parameters and plot the results on the image control.

Needs to code everything except the algorithm core logic

Tools for analysis (6/6) – Coding in C#

Challenges in data analysis - conversions

- Major challenge is, some algorithms in some tools does not work with float and string, they expect integer only
- **DICOM** data incompleteness sometimes and compatibility checking against the DICOM standard

- Scaling the data: Standardization is followed when we have dataset with different units (gm, km, ltr, kv, etc.)
 E.g.: formula z = (x u) / s, is used, where Where z is the new value, x is the original value, u is the mean and s is the standard deviation
- Data type conversion: Changing the string value to the numerical values.
 E.g.: In python, for mapping the country names, we use the dictionary of integer values to represent the string

d = {'UK': 0, 'USA': 1, 'N': 2} and df ['Nationality'] = df ['Nationality'].map(d)

- CAD_e and CAD_x are young disciplines combining image processing, ML, Pattern Recognition and domain knowledge of medicine.
- For anything and everything, selection of right dataset and right features is most important.
- The quantum of data being produced is really challenging.
- Carefully sift the right dataset by looking at the dataset description and its validity.
- Be clear about what data you are going to process.
- You can do a comparative analysis to study the performance of the tools in an experimental setup.

7/21/2020

References

- NCI,www.cancerimagingarchive.net,(2016).NationalCancerInstitute(NCI).[Online]Availableat:https://public.cancerimagingarchive.net/ncia/login.jsf.
- Philips Medical Systems, The Netherland (2014), In: DICOM conformance statement technical report PIIOffc.0001414. Available via Philips website. <u>https://www.usa.philips.com/healthcare/resources/support-documentation/dicom-computed-tomography</u>. Accessed 06 April 2014
- Siemens, PA, USA (2020). In: Clinical application guide. Available via website. <u>https://www.healthcare.siemens.co.in/computed-tomography/options-upgrades/clinical-applications/syngo-ct-</u> <u>colonography</u>. Accessed 12 June 2020
- Siegel, R. (2013). Colorectal cancerfacts and figures 2011-2013. [Online] Atlanta: American Cancer Society, pp. 1-5. Available at: http://www.cancer.org.
- SiemensMedicalSolutions,(2012).Clinicalapplicationguide.[Online]Availableat:www.medical.siemens.com[AccessedMarch .2012].
- The DICOM chapter3(2012). PS3.3. [Online] Virginia: NEMAUSA, pp.390–1174. Available at: http://dicom.nema.org/standard.html[Accessed19June.2016].
- Kalender, WA. (2006). X-ray computed tomography. Phys. Med. Biol, 51(13), pp. 29-43.

All images shown in this presentation are properly cited and acknowledged. There is no infringement or copyright violation of any details. And these details are available in public domain

Acknowledgements

